Integrated exposure uptake biokinetic model for lead in children: empirical comparisons with epidemiologic data.
نویسندگان
چکیده
The concept of model validation is evolving in the scientific community. This paper addresses the comparison of observed and predicted estimates as one component of model validation as applied to the integrated exposure uptake biokinetic (IEUBK) model for lead in children. The IEUBK model is an exposure (dose)-response model that uses children's environmental lead exposures to estimate risk of elevated blood lead (typically > 10 micrograms/dl) through estimation of lead body burdens in a mass balance framework. We used residence-specific environmental lead measurements from three epidemiologic datasets as inputs for the IEUBK model to predict blood lead levels, and compared these predictions with blood lead levels of children living at these residences. When the IEUBK modeling focused on children with representative exposure measurements, that is, children who spent the bulk of their time near the locations sampled, there was reasonably close agreement between observed and predicted blood lead distributions in the three studies considered. Geometric mean observed and predicted blood lead levels were within 0.7 microgram/dl, and proportions of study populations expected to be above 10 micrograms/dl were within 4% of those observed.
منابع مشابه
The ICRP age-specific biokinetic model for lead: validations, empirical comparisons, and explorations.
The objective of this manuscript is to provide a description of the International Commission for Radiation Protection (ICRP) model and a comparison to other models (the integrated exposure uptake biokinetic [IEUBK] and O'Flaherty models), including the software used with the models, and a comparison of the model predictions for selected situations. The ICRP biokinetic model for Pb is a multicom...
متن کاملThe conceptual structure of the integrated exposure uptake biokinetic model for lead in children.
The integrated exposure uptake biokinetic model for lead in children was developed to provide plausible blood lead distributions corresponding to particular combinations of multimedia lead exposure. The model is based on a set of equations that convert lead exposure (expressed as micrograms per day) to blood lead concentration (expressed as micrograms per deciliter) by quantitatively mimicking ...
متن کاملCalculating the interindividual geometric standard deviation for use in the integrated exposure uptake biokinetic model for lead in children.
The integrated exposure uptake biokinetic (IEUBK) model, recommended for use by the U.S. Environmental Protection Agency at residential Superfund sites to predict potential risks to children from lead exposure and to establish lead remediation levels, requires an interindividual geometric standard deviation (GSDi) as an essential input parameter. The GSDi quantifies the variability of blood lea...
متن کاملThe integrated exposure uptake biokinetic model for lead in children: independent validation and verification.
The U.S. Environmental Protection Agency employs a model, the integrated exposure biokinetic (IEUBK) model for lead in children, for the assessment of risks to children posed by environmental lead at hazardous waste sites. This paper describes results of an effort to verify the consistency of the documentation with the computer model and to test the computer code using a group that is independe...
متن کاملUses and limits of empirical data in measuring and modeling human lead exposure.
This paper examines the uses and limits of empirical data in evaluating measurement and modeling approaches to human lead exposure. Empirical data from experiment or observation or both have been used in studies of lead exposure. For example, experimental studies have elucidated and quantified physiologic or biokinetic parameters of lead exposure under controlled conditions. Observation, i.e., ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 106 شماره
صفحات -
تاریخ انتشار 1998